Share:


Analysis of self tuning methods for direct conversion transceivers

Abstract

Integrated circuit fabrication technological processes affect error of transceiver’s components, thus aims to minimize such deviation. This paper analyzes modern wireless transceiver calibration methods: feedforward, feedback, hybrid and indirect. Main parameters to calibrate are: I/Q gain and phase imbalance, DC offset and second order input intercept point. For first time, relations between transceiver parameters, parameters to be calibrated and calibration methods are proposed.


Article in Lithuanian.


Belaidžio ryšio siųstuvų-imtuvų susiderinimo būdų analizė


Santrauka


Integrinių grandynų gamybos technologinių procesų paklaidos didina daugiastandarčių siųstuvų-imtuvų komponentų parametrų sklaidą ir blogina jų veiką, tad siekiama komponentų verčių nuokrypius kompensuoti. Pagrindiniai derinami parametrai yra tokie: siųstuvo ir imtuvo kvadratūrinių kanalų nuolatinės dedamosios, amplitudės ir fazės poslinkiai, antrosios eilės iškraipymai. Darbe išanalizuoti žinomi daugiastandarčių belaidžio ryšio siųstuvų-imtuvų derinimo būdai, jie suskirstyti į tiesioginio, netiesioginio ir grįžtamojo ryšio bei mišriuosius būdus. Ištirtos analoginės ir skaitmeninės modernių siųstuvų-imtuvų derinimo sistemos, atlikta jų privalumų ir trūkumų bei modernioms belaidžio ryšio sistemoms aktualių derinimo parametrų analizė.


Reikšminiai žodžiai: integrinis grandynas, daugiastandartis siųstuvas-imtuvas, derinimosi sistema, KMOP.

Keyword : integrated circuit, transceiver, tuning system, CMOS

How to Cite
Kladovščikov, L., & Navickas, R. (2018). Analysis of self tuning methods for direct conversion transceivers. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.2762
Published in Issue
Oct 9, 2018
Abstract Views
697
PDF Downloads
486
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Alegre, J., Calvo, B., & Celma, S. (2008, June–July). A high performance CMOS feedforward AGC circuit for wideband wireless receivers. 2008 IEEE International Symposium on Industrial Electronics (pp. 1657-1661). Cambridge, UK. https://doi.org/10.1109/ISIE.2008.4677063

Alegre, J., Celma, S., Calvo, B., Fiebig, N., & Halder, S. (2009). SiGe Analog AGC Circuit for an 802.11a WLAN Direct Conversion Receiver. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(2), 93-96. https://doi.org/10.1109/TCSII.2008.2010173

Atalla, E., Bellaouar, A., & Balsara, P. (2013, August). IIP2 requirements in 4G LTE handset receivers. 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1132-1135). Columbus, OH, USA. https://doi.org/10.1109/MWSCAS.2013.6674852

Chen, J., Renzhong, X., Weinan, L., Yumei, H., & Zhiliang, H. (2011, October). Reconfigurable low pass filter with Automatic Frequency Tuning for WCDMA and GSM application. 2011 9th IEEE International Conference on ASIC (pp. 1066-1069). China. https://doi.org/10.1109/ASICON.2011.6157392

Cheng, J., Huang, F., Wu, L., Tian, Y., & Jiang, N. (2009, September). A High-Linearity, 60-dB Variable Gain Amplicier with Dual DC-Offset Cancellation for UWB Systems. 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (pp. 1-4). Beijing, China. https://doi.org/10.1109/WICOM.2009.5303327

Danilovic, D., Milovanovic, V., Cathelin, A., Vladimirescu, A., & Nikolic, B. (2016, May). Low-power inductorless RF receiver front-end with IIP2 calibration through body bias control in 28nm UTBB FDSOI. 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (pp. 87-90). San Francisco, CA, USA. https://doi.org/10.1109/RFIC.2016.7508257

Dong, J., Jiang, H., Weng, Z., Zheng, J., Zhang, C., & Wang, Z. (2015, May). A fast AGC method for multimode zero-IF/sliding-IF WPAN/BAN receivers. 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1310-1313). Lisbon, Portugal. https://doi.org/10.1109/ISCAS.2015.7168882

Dufrêne, K. (2007). Analysis and cancellation methods of second order intermodulation distortion in RFIC downconverion mixers (pp. 114-135). Universität Erlangen-Nürnberg.

Dufrene, K., Boos, Z., & Weigel, R. (2008). Digital adaptive IIP2 Calibration scheme for CMOS downconversion mixers. IEEE Journal of Solid-State Circuits, 43(11), 2434-2445. https://doi.org/10.1109/JSSC.2008.2005453

Fan, C., Lu, Y., & Mao, C. (2009, January). Design of a Chebyshev low pass filter with automatic frequency calibration. 2009 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics (PrimeAsia) (pp. 121-124). Shanghai, China. https://doi.org/10.1109/PRIMEASIA.2009.5397431

Feng, Y., Takemura, G., Kawaguchi, S., Itoh, N., & Kinget, P. (2010, February). A low-power low-noise direct-conversion front-end with digitally assisted IIP2 background self calibration. 2010 IEEE International Solid-State Circuits Conference –(ISSCC) (pp. 70-71). San Francisco, CA, USA. https://doi.org/10.1109/ISSCC.2010.5434044

Feng, Y., Takemura, G., Kawaguchi, S., Itoh, N., & Kinget, P. (2011). Digitally assisted IIP2 calibration for CMOS direct-conversion receivers. IEEE Journal of Solid-State Circuits, 46(10), 2253-2267. https://doi.org/10.1109/JSSC.2011.2161213

Furuta, Y., Heima, T., Sato, H., & Shimizu, T. (2007, January). A low flicker-noise direct conversion mixer in 0.13 um CMOS with dual-mode DC offset cancellation circuits. 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (pp. 265-268). Long Beach, CA, USA. https://doi.org/10.1109/SMIC.2007.322809

Gao, J., Jiang, H., Zhang, L., Dong, J., & Wang, Z. (2012, August). A programmable low-pass filter with adaptive miller compensation for zero-IF transceiver. 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 226-229). Boise, ID, USA. https://doi.org/10.1109/MWSCAS.2012.6291998

Genesis Microchip Inc. (2007). Hybrid automatic gain control (AGC), US Patent US7222037 B2.

Heping, M., Fang, Y., Yin, S., & Dai, F. F. (2009). A multi-standard active-RC filter with accurate tuning system. Journal of Semiconductors, 30(9), 1-4. https://doi.org/10.1088/1674-4926/30/9/095011

Huang, G., Wu, Y., Zhong, C., & Lin, P. (2011, August). A DC-offset cancellation circuit for PGA in baseband communication. 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1-4). Seoul, South Korea. https://doi.org/10.1109/MWSCAS.2011.6026317

Huang, Y., Li, W., Hu, S., Xie, R., Li, X., Fu, J., Sun, Y., Pan, Y., Chen, H., Jiang, C., Liu, J., Chen, Q., Qiu, D., Qin, Y., Hong, Z., & Zeng, X. (2013). A high-linearity WCDMA/GSM reconfigurable transceiver in 0.13um CMOS. IEEE Transactions on Microwave Theory and Techniques, 61(1), 204-217. https://doi.org/10.1109/TMTT.2012.2222913

Huang, M., Xiaofeng, L., Guo, J., & Chen, D. (2015, March– April). A compact I/Q imbalance calibration technique for power-aware fully-integrated receiver without on-chip base-band processor. 2015 IEEE International Wireless Symposium (IWS 2015) (pp. 1-4). Shenzhen, China. https://doi.org/10.1109/IEEE-IWS.2015.7164512

IBM. (2003). Foundry technologies 180-nm CMOS, RF CMOS and SiGe BiCMOS.

Inamori, M., Bostamam, A., Sanada, Y., & Minami, H. (2009). IQ imbalance compensation scheme in the presence of frequency offset and dynamic DC offset for a direct conversion receiver. IEEE Transactions on Wireless Communications, 8(5), 2214-2220. https://doi.org/10.1109/TWC.2009.080139

Yen, M., Wu, C., & Chen, H. (2016, October). An automatic frequency tuning loop for the low pass filter of 400–800 MHz Spectrum sensing system. 2016 IEEE 5th Global Conference on Consumer Electronics (pp. 1-2). Kyoto, Japan. https://doi.org/10.1109/GCCE.2016.7800474

Yin, Y., Chi, B., Yu, Q., Liu, B., & Wang, Z. (2013, November). A 0.1–5GHz SDR transmitter with dual-mode power amplifier and digital-assisted I/Q imbalance calibration in 65nm CMOS. 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC) (205-208). Singapore, Singapore. https://doi.org/10.1109/ASSCC.2013.6691018

Yu, W., Cheang, C., Mak, P., Cheng, W., Un, K., Lok, U., & Martins, R. (2013). A nonrecursive digital calibration technique for joint elimination of transmitter and receiver I/Q imbalances with minimized add-on hardware. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(8), 462-466. https://doi.org/10.1109/TCSII.2013.2268412

Yu-Chih, C., Wei-Hao, C., Tsung-Hsien, L. (2008, April). A 120-MHz active-RC filter with an agile frequency tuning scheme in 0.18 um CMOS. 2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT) (pp. 208-211). Hsin-chu, Taiwan. https://doi.org/10.1109/VDAT.2008.4542449

Jacobus de Witt, J. (2011). Modelling, estimation and compensation of imbalances in quadrature transceivers (pp. 60-63). Stellenbosch University.

Jeon, O., Fox, R., & Myers, B. (2006). Analog AGC Circuitry for a CMOS WLAN Receiver. IEEE Journal of Solid-State Circuits, 41(10), 2291-2300. https://doi.org/10.1109/JSSC.2006.881548

Jiang, P., Lu, Z., Guan, R., & Zhou, J. (2013). All-Digital adaptive module for automatic background IIP2 calibration in CMOS downconverters with fast convergence. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(7), 427-431. https://doi.org/10.1109/TCSII.2013.2261171

Jinup, L., Youngjoo, C., Kyungsoo, J., Jongmin, P., Joongho, C., & Jaewhui, K. (2005, September). A wide-band active-RC filterwith a fast tuning scheme for wireless communication receivers. Proceedings of the IEEE 2005 Custom Integrated Circuits Conference (637-640). San Jose, CA, USA. https://doi.org/10.1109/CICC.2005.1568750

Kaczman, D., Shah, M., Alam, M., Rachedine, M., Cashen, D., Han, L., & Raghavan, A. (2009). A single-chip 10-Band WCDMA/HSDPA 4-Band GSM/EDGE SAW-less CMOS Receiver With DigRF 3G Interface and +90 dBm IIP2. IEEE Journal of Solid-State Circuits, 44(3), 718-739. https://doi.org/10.1109/JSSC.2009.2013762

Ken, X., Min, C., Xiaoyong, H., Zhijian, C., & Weiguo, Z. (2015, November). An automatic DC-Offset cancellation method and circuit for RF transceivers. 2015 IEEE 11th International Conference on ASIC (ASICON) (pp. 1-4). Chengdu, China. https://doi.org/10.1109/ASICON.2015.7517123

Kiayani, A., Anttila, L., Zou, Y., & Valkama, M. (2012). Advanced receiver design for mitigating multiple RF impairments in OFDM systems: algorithms and RF Measurements. Journal of Electrical and Computer Engineering, 2012, 1-16. https://doi.org/10.1155/2012/730537

Kiela, K., Jurgo, M., & Kladovščikov, L. (2016). Integrinių analoginių filtrų grandynų derinimosi sistemos projektavimas. Science ‒ Future of Lithuania / Mokslas ‒ Lietuvos ateitis, 8(3), 308-314. https://doi.org/10.3846/mla.2016.935

Kiela, K. (2017). Integrinių analoginių filtrų belaidžio ryšio sistemoms kūrimas (daktaro disertacija). Vilniaus Gedimino technikos universitetas, Vilnius.

Kitsunezuka, M., Tokairin, T., Maeda, T., & Fukaishi, M. (2011). A Low-IF/Zero-IF reconfigurable analog baseband IC with an I/Q imbalance cancellation scheme. IEEE Journal of Solid-State Circuits, 46(3), 572-582. https://doi.org/10.1109/JSSC.2010.2102510

Ko, Y., & Stapleton, S. (2011). Gain and phase mismatch effects on double image rejection transmitter. IET Circuits, Devices & Systems, 5(3), 212-221. https://doi.org/10.1049/iet-cds.2010.0156

Li, X., Le Cui, X., Wang, B., & Lee, C. (2012, October). A 100MHz PGA with DC offset cancellation for UWB receiver. 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (pp. 1-3). Xi’an, China. https://doi.org/10.1109/ICSICT.2012.6467611

Lopelli, E., Spiridon, S., & van der Tang, J. (2011, February). A 40nm wideband direct-conversion transmitter with sub-sampling-based output power, LO feedthrough and I/Q imbalance calibration. 2011 IEEE International Solid-State Circuits

Conference (pp. 424-426). San Francisco, CA, USA. https://doi.org/10.1109/ISSCC.2011.5746380

Luo, J., Kortke, A., & Keusgen, W. (2009, July). Joint calibration of frequency selective time variant I/Q-imbalance and modulator DC-offset error in broadband direct-conversion transmitters. 2009 International Conference on Communications, Circuits and Systems (pp. 255-259). Milpitas, CA, USA. https://doi.org/10.1109/ICCCAS.2009.5250521

Oimins, X., Xueqing, H., Pens, G., Jun, Y., Shi, Y., Dai, F., & Jaeser, R. (2006, May). A direct-conversion mixer with DC-offset cancellation for IEEE 802.11a WLAN receiver. 2006 IEEE International Symposium on Circuits and Systems (pp. 4). Island of Kos, Greece. https://doi.org/10.1109/ISCAS.2006.1693928

Onabajo, M., & Silva-Martinez, J. (2012). Analog circuit design for process variation-resilient systems-on-a-chip. New York: Springer. https://doi.org/10.1007/978-1-4614-2296-9

Oshima, T., Maio, K., Hioe, W., & Shibahara, Y. (2004). Novel automatic tuning method of RC filters using a digital-DLL technique. IEEE Journal of Solid-State Circuits, 39(11), 2052-2054. https://doi.org/10.1109/JSSC.2004.835824

Pang, J., Maki, S., Kawai, S., Nagashima, N., Seo, Y., Dome, M., Kato, H.; Katsuragi, M.; Kimura, K.; Kondo, S.; Terashima, Y., Liu, H., Siriburanon, T., Narayanan, A., Fajri, N., Kaneko, T., Yoshioka, T., Liu, B., Wang, Y., Wu, R., Li, N. Tokgoz, K.; Miyahara, M.; Okada, K.; Matsuzawa, A. (2017, February). 24.9 A 128-QAM 60GHz CMOS transceiver for IEEE802.11ay with calibration of LO feedthrough and I/Q imbalance. 2017 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 424-425). San Francisco, CA, USA. https://doi.org/10.1109/ISSCC.2017.7870442

Parssinen, A. (2011). Multimode-multiband transceivers for next generation of wireless communications. 2011 Proceedings of the ESSCIRC (ESSCIRC) (pp. 25-36). https://doi.org/10.1109/ESSCIRC.2011.6044910

Pérez, J., Calvo, B., & Celma, S. (2010). A high-performance CMOS feedforward AGC Circuit for a WLAN receiver. IEEE Transactions on Industrial Electronics, 57(8), 2851-2857. https://doi.org/10.1109/TIE.2009.2036021

Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 44(6), 428-435. https://doi.org/10.1109/82.592569

Rodriguez, S., Rusu, A., Zheng, L., & Ismail, M. (2008). CMOS RF mixer with digitally enhanced IIP2. Electronics Letters, 44(2), 121. https://doi.org/10.1049/el:20082895

Shuhei, Y., Boric-Lubecke, O., & Lubecke, V. (2008, June). Cancellation techniques for LO leakage and Dc offset in direct conversion systems. 2008 IEEE MTT-S International Microwave Symposium Digest (1191-1194). Atlanta, GA, USA. https://doi.org/10.1109/MWSYM.2008.4633271

Song, Y., Yu, X., Jin, Z., & Chi, B. (2014, August). A 49-dB DR wide locking range hybrid AGC for an ISM-band receiver in 0.18 um CMOS. 2014 IEEE International Symposium on Radio-Frequency Integration Technology (pp. 1-3). Hefei, China. https://doi.org/10.1109/RFIT.2014.6933265

Svitek, R., & Raman, S. (2005). DC offsets in direct-conversion receivers: characterization and implications. IEEE Microwave Magazine, 6(3), 76-86. https://doi.org/10.1109/MMW.2005.1511916

Tien-Yu, L., & Chi-Hsiang, L. (2014). 1-V 365uW 2.5-MHz Channel Selection Filter for 3G Wireless Receiver in 55-nm CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(5), 1164-1169. https://doi.org/10.1109/TVLSI.2013.2260187

Vahidfar, M., & Shoaei, O. (2008). A High IIP2 Mixer enhanced by a new calibration technique for Zero-IF Receivers. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(3), 219-223. https://doi.org/10.1109/TCSII.2008.918998

van Liempd, B., Borremans, J., Martens, E., Cha, S., Suys, H., Verbruggen, B., & Craninckx, J. (2014). A 0.9 V 0.4–6 GHz Harmonic Recombination SDR Receiver in 28 nm CMOS With HR3/HR5 and IIP2 Calibration. IEEE Journal of Solid-State Circuits, 49(8), 1815-1826. https://doi.org/10.1109/JSSC.2014.2321148

Wang, R., Lin, M., Wang, H., & Sun, S. (2016). A widely tunable active-RC complex filter for multi-mode wireless receivers with automatic frequency tuning. IEICE Electronics Express, 13(18), 1-11. https://doi.org/10.1587/elex.13.20160764

Xiangning, F., Da, C., & Yangyang, F. (2010a, September). A switch controlled resistor based CMOS PGA with DC offset cancellation for WSN RF chip. 2010 International Symposium on Signals, Systems and Electronics (pp. 1-4). Nanjing, China. https://doi.org/10.1109/ISSSE.2010.5607070

Xiangning, F., Yutao, S., & Yangyang, F. (2010b, September). A CMOS DC offset cancellation (DOC) circuit for PGA of low IF wireless receivers. 2010 International Symposium on Signals, Systems and Electronics (pp. 1-4). Nanjing, China. https://doi.org/10.1109/ISSSE.2010.5607078

Xiaojie, C., Min, L., Zheng, G., Yin, S., & Fa Foster, D. (2010, September). A CMOS programmable gain amplifier with a novel DC-offset cancellation technique. IEEE Custom Integrated Circuits Conference 2010 (pp. 1-4). San Jose, CA, USA. https://doi.org/10.1109/CICC.2010.5617453

Xiaoman, W., Baoyong, C., & Zhihua, W. (2010). A low-power high-data-rate ASK if receiver with a digital-control AGC loop. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(8), 617-621. https://doi.org/10.1109/TCSII.2010.2050954

Ximenes, A., & Swart, J. (2011, October). Analog automatic gain control (AGC) CMOS WLAN direct conversion receiver (DCR). 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011) (pp. 185-190). Natal, Brazil. https://doi.org/10.1109/IMOC.2011.6169275

Xu, Y., Chi, B., Yu, X., Qi, N., Chiang, P., & Wang, Z. (2012a). Power-scalable, complex bandpass/low-pass filter with I/Q imbalance calibration for a multimode GNSS receiver. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(1), 30-34. https://doi.org/10.1109/TCSII.2011.2177700

Xu, Y., Qi, N., Chen, Z., Chi, B., Wang, Z. (2012b, May). A hybrid approach to I/Q imbalance self-calibration in reconfigurable low-IF receivers. 2012 IEEE International Symposium on Circuits and Systems (pp. 552-555). Seoul, South Korea. https://doi.org/10.1109/ISCAS.2012.6272089

Xu, Q., Hu, X., Jan, Y., Shi, Y., Dai, F., & Jaeger, R. (2007 September–October). A direct-conversion mixer with a DC-offset cancellation for WLAN. 2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting. Boston, MA, USA. https://doi.org/10.1109/BIPOL.2007.4351828

Ziomek, C. D., & Hunter, M. T. (2012). Extending the Useable Range of Error Vector Magnitude (EVM) Testing. ZTEC Instruments, Inc. Albuquerque, New Mexico, USA.