Share:


On quasi-gasdynamic system of equations with general equations of state and its application

    Alexander Zlotnik Affiliation
    ; Vladimir Gavrilin Affiliation

Abstract

A quasi-gasdynamic system of equations with a mass force and a heat source is well known in the case of the perfect polytropic gas. In the paper, the system is extended to the case of general equations of gas state satisfying thermodynamic stability conditions. The entropy balance equation is studied. The validity of the non-negativity property is algebraically analyzed for the entropy production. Two different forms are derived for its relaxation summands. It is proved that under a condition on the heat source intensity, the non-negativity property is valid.


An application to one-dimensional Euler real gas dynamics equations is given. A two-level explicit symmetric in space finite-difference scheme is constructed. The scheme is tested in the cases of the stiffened gas and the Van der Waals gas equations of state.

Keyword : quasi-gasdynamic equations, general state equations, the entropy balance equation, Euler equations, finite-difference methods

How to Cite
Zlotnik, A., & Gavrilin, V. (2011). On quasi-gasdynamic system of equations with general equations of state and its application. Mathematical Modelling and Analysis, 16(4), 509-526. https://doi.org/10.3846/13926292.2011.627382
Published in Issue
Nov 22, 2011
Abstract Views
495
PDF Downloads
359
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.