Share:


Application of smart technologies in water management analysis

Abstract

More and more regions of the world are suffering due to urbanization and emerging industries. Therefore, water extraction and water management become a priority issue globally. Scientists are beginning to implement the most modern technologies and use sustainable development and sustainable construction solutions which would help solve water management problems. The article analyses the application of the most advanced technologies in water management, which increase the efficiency of buildings in the operational phase and help to implement the goals of sustainable development and sustainable construction. The study found that AI (Artificial Intelligence) and IoT (Internet of Things) technologies can be applied in many areas of water management. For example, monitoring and prevention of engineering network accidents, water distribution in engineering networks, wastewater treatment, water desalination processes, selection of efficient water-saving engineering solutions, flood prevention and implementation of sustainable construction. The implementation of the most modern technologies benefit citizens, state institutions, water management companies and the ecosystem.


Article in Lithuanian.


Išmaniųjų technologijų taikymo vandentvarkoje analizė


Santrauka


Urbanizacija, naujų pramonės šakų plėtra ir auganti populiacija lemia, kad vis daugiau regionų susiduria su vandens trūkumu. Dėl to vandens gavybos ir valymo klausimai tampa prioritetiniai, o mokslininkai taiko pažangias technologijas ir darnios plėtros sprendimus vandentvarkos problemoms spręsti. Todėl šiame tyrime siekiama išsiaiškinti naujausių ir pažangiausių technologijų, didinančių pastatų efektyvumą eksploatacijos etape bei padedančių įgyvendinti darnios plėtros ir tvarios statybos tikslus, taikymo lauką vandentvarkos srityje. Tyrime nustatyta, kad dirbtinio intelekto ir daiktų interneto technologijas galima pritaikyti daugelyje vandentvarkos sričių, pavyzdžiui, inžinerinių tinklų avarijoms stebėti ir prevencijai, vandeniui paskirstyti inžineriniuose tinkluose, nuotekoms valyti, vandens gėlinimo procesuose, efektyviems vandenį taupantiems inžineriniams sprendiniams parinkti, potvynių prevencijai ir tvariai statybai įgyvendinti. Pažangiausių technologijų pritaikymas suteikia naudos žmonėms, valstybių institucijoms, vandentvarkos įmonėms ir ekosistemai.


Reikšminiai žodžiai: vandentvarka, nuotekų valymas, daiktų internetas, dirbtinis intelektas, vandens gėlinimas, tvari statyba, darni plėtra.

Keyword : water management, wastewater treatment, Internet of Things, artificial intelligence, water desalination, sustainable construction, sustainable development

How to Cite
Piaseckienė, G., & Antuchevičienė, J. (2024). Application of smart technologies in water management analysis. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 16. https://doi.org/10.3846/mla.2024.21359
Published in Issue
Dec 30, 2024
Abstract Views
41
PDF Downloads
19
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Airowater. (n.d.). Airowater atmospheric water generator technology. Retrieved December 5, 2024, from https://www.airowater.com/technology

AlHomadhi, E., Almobarky, M. A., & Sassi, K. (in press). Oily water treatment using particles of crushed dates seeds as a deep bed filtration material. Journal of King Saud University - Engineering Sciences. https://doi.org/10.1016/j.jksues.2024.03.001

Alshehri, M., Bhardwaj, A., Kumar, M., Mishra, S., & Gyani, J. (2021). Cloud and IoT based smart architecture for desalination water treatment. Environmental Research, 195, Article 110812. https://doi.org/10.1016/j.envres.2021.110812

ArchDaily. (n.d.). How to save water with a smart water-management system. Retrieved April 1, 2024, from https://www.archdaily.com/970711/how-to-save-water-with-a-smart-water-management-system

Banerjee, C., Bhaduri, A., & Saraswat, C. (2022). Digitalization in urban water governance: Case study of Bengaluru and Singapore. Frontiers in Environmental Science, 10, Article 816824. https://doi.org/10.3389/FENVS.2022.816824

Batarseh, F. A., Kulkarni, A., Sreng, C., Lin, J., & Maksud, S. (2023). ACWA: An AI-driven cyber-physical testbed for intelligent water systems. Water Practice & Technology, 18(12), 3399–3418. https://doi.org/10.2166/wpt.2023.197

Batista, L. T., Franco, J. R. Q., Fakury, R. H., Porto, M. F., Alves, L. V. R., & Kohlmann, G. S. (2024). BIM-IoT-FM integration: Strategy for implementation of sustainable water management in buildings. Smart and Sustainable Built Environment, 13(5), 1096–1116. https://doi.org/10.1108/SASBE-11-2022-0250

Boyle, C., Ryan, G., Bhandari, P., Law, K. M., Gong, J., & Creighton, D. (2022). Digital transformation in water organizations. Journal of Water Resources Planning and Management, 148(7), Article 03122001. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001555

Bartolini, O. (2021). How to save water with a smart water-management system. ArchDaily. https://www.archdaily.com/970711/how-to-save-water-with-a-smart-water-management-system

Côrte, P., Sampaio, H., Lussi, E., & Westphall, C. (2023). IoT energy management for smart homes’ water management system. Journal of Circuits, Systems and Computers, 32(13), Article 2350217. https://doi.org/10.1142/S0218126623502171

García Doménech, N., Purcell-Milton, F., & Gun’ko, Y. K. (2020). Recent progress and future prospects in development of advanced materials for nanofiltration. Materials Today Communications, 23, Article 100888. https://doi.org/10.1016/j.mtcomm.2019.100888

Grino. (n.d.). Battery-free solar-based water desalination. https://grinowater.com/products

He, R., Tiong, R. L., Yuan, Y., & Zhang, L. (2024). Enhancing resilience of urban underground space under floods: Current status and future directions. Tunnelling and Underground Space Technology, 147, Article 105674. https://doi.org/10.1016/j.tust.2024.105674

Herrera-León, S., Cruz, C., Negrete, M., Chacana, J., Cisternas, L. A., & Kraslawski, A. (2022). Impact of seawater desalination and wastewater treatment on water stress levels and greenhouse gas emissions: The case of Chile. Science of the Total Environment, 818, Article 151853. https://doi.org/10.1016/j.scitotenv.2021.151853

Hidropolitika Akademi. (n.d.). Top 8 water management trends & innovations in 2024. Retrieved April 1, 2024, from https://www.hidropolitikakademi.org/en/article/30702/top-8-water-management-trends--innovations-in-2024

Yang, X., Chen, W., Jiang, M., Jiang, P., & Shen, X. (2022). Dual effects of technology change: How does water technological progress affect China’s water consumption? iScience, 25(7), Article 104629. https://doi.org/10.1016/j.isci.2022.104629

Yoonus, H., & Al-Ghamdi, S. G. (2020). Environmental performance of building integrated grey water reuse systems based on Life-Cycle Assessment: A systematic and bibliographic analysis. Science of the Total Environment, 712, Article 136535. https://doi.org/10.1016/j.scitotenv.2020.136535

Jia, Z., Cai, Y., Chen, Y., & Zeng, W. (2018). Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resources, Conservation and Recycling, 134, 282–293. https://doi.org/10.1016/j.resconrec.2018.03.030

Levapor. (n.d.). Waste water treatment. Retrieved December 5, 2024, from https://levapor.com/

Manikandan, S., Subbaiya, R., Saravanan, M., Ponraj, M., Selvam, M., & Pugazhendhi, A. (2022). A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere, 289, Article 132867. https://doi.org/10.1016/j.chemosphere.2021.132867

Prashar, N., Lakra, H. S., Shaw, R., & Kaur, H. (2023). Urban flood resilience: A comprehensive review of assessment methods, tools, and techniques to manage disaster. Progress in Disaster Science, 20, Article 100299. https://doi.org/10.1016/j.pdisas.2023.100299

Priya, A. K., Gnanasekaran, L., Kumar, P. S., Jalil, A. A., Hoang, T. K. A., Rajendran, S., Soto-Moscoso, M., & Balakrishnan, D. (2022). Recent trends and advancements in nanoporous membranes for water purification. Chemosphere, 303, Article 135205. https://doi.org/10.1016/j.chemosphere.2022.135205

Qi, Y., Li, D., Zhang, S., Li, F., & Hua, T. (2024). Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. Journal of Environmental Sciences, 141, 102–128. https://doi.org/10.1016/j.jes.2023.06.033

Rath, M., Tripathy, S. S., Tripathy, N., Panigrahi, C. R., & Pati, B. (2023). AIoT-based water management and IoT-based smart irrigation system: Effective in smart agriculture. In AIoT technologies and applications for smart environments (pp. 93–112). The Institution of Engineering and Technology. https://doi.org/10.1049/PBPC057E_CH6

Remote Waters. (n.d.). Water purification systems. Retrieved April 1, 2024, from https://www.remote-waters.com/system

Safeer, S., Pandey, R. P., Rehman, B., Safdar, T., Ahmad, I., Hasan, S. W., & Ullah, A. (2022). A review of artificial intelligence in water purification and wastewater treatment: Recent advancements. Journal of Water Process Engineering, 49, Article 102974. https://doi.org/10.1016/j.jwpe.2022.102974

Samadi, S. (2022). The convergence of AI, IoT, and big data for advancing flood analytics research. Frontiers in Water, 4, Article 786040. https://doi.org/10.3389/frwa.2022.786040

Solution. (n.d.). Ocean Oasis. Retrieved April 1, 2024, from https://www.oceanoasis.co/solution/

StartUs Insights. (n.d.). Top 8 water management trends in 2025. Retrieved April 1, 2024, from https://www.startus-insights.com/innovators-guide/water-management-trends/

Sun Connect News. (n.d.). Using solar for clean water: Introducing Grino. Retrieved April 1, 2024, from https://sun-connect.org/using-solar-for-clean-water-introducing-grino-2/

Van de Walle, A., Kim, M., Alam, M. K., Wang, X., Wu, D., Dash, S. R., Rabaey, K., & Kim, J. (2023). Greywater reuse as a key enabler for improving urban wastewater management. Environmental Science and Ecotechnology, 16, Article 100277. https://doi.org/10.1016/j.ese.2023.100277

WaHa. (n.d.). Breakthrough technology. Retrieved December 5, 2024, from https://www.wahainc.com/breakthrough-technology/

Wang, Y., Liu, P., VanTassell, J., Hilton, S. P., Guo, L., Sablon, O., Wolfe, M., Freeman, L., Rose, W., Holt, C., Browning, M., Bryan, M., Waller, L., Teunis, P. F. M., & Moe, C. L. (2023). When case reporting becomes untenable: Can sewer networks tell us where COVID-19 transmission occurs? Water Research, 229, Article 119516. https://doi.org/10.1016/j.watres.2022.119516