Share:


The impact of an office indoor climate system performance parameters on energy consumption

Abstract

This article presents the impact of changing the operating parameters of a building’s indoor climate systems on a building’s management system. The study is performed using the dynamic energy modelling program DesignBuilder. The created dynamic energy model is based on the documentation of an actual administrative building and the data recorded by the building management system. The developed model changes the operating modes and parameters of the components of microclimate systems. After the changes, simulations are performed to obtain new results for the building’s energy needs. These results are compared, and the impact of different parameters on energy consumption is analyzed. The study found that a proper setting of indoor climate performance can lead to a 26% reduction in heat and a 7% reduction in cooling costs, which does not adversely affect the comfort of the people.


Article in Lithuanian.


Biurų pastato mikroklimato sistemų veikimo parametrų įtaka energijos poreikiams


Santrauka


Europos Sąjungoje keliami tikslai, skatinantys energijos vartojimo efektyvumo didinimą. Vieną didžiausių energijos vartojimo mažinimo potencialų turi pastatų sektorius. Šiame straipsnyje analizuojama, kokią įtaką energijos poreikiams daro pastato mikroklimato sistemų veikimo parametrų keitimas pastato valdymo sistemoje. Tyrimas atliekamas naudojant dinaminio energinio modeliavimo programą DesignBuilder. Tyrimo objekto modelis sukurtas pagal realaus administracinės paskirties pastato projektinę dokumentaciją bei remiantis pastato valdymo sistemos fiksuojamais duomenimis. Sukurtame modelyje keičiami mikroklimato sistemų komponentų darbo režimai ir parametrai. Atlikus pakeitimus atliekamas įvairių sistemų valdymo alternatyvų modeliavimas. Rezultatai lyginami tarpusavyje, analizuojama skirtingų parametrų įtaka pastato energijos poreikiams. Tyrimo metu nustatyta, kad, tinkamai suderinus mikroklimato sistemų veikimo parametrus, galima tikėtis 26 % šilumos ir 7 % vėsos sąnaudų sumažėjimo, kuris nedaro neigiamo poveikio patalpose esančių žmonių komfortui.


Reikšminiai žodžiai: mikroklimato sistemų valdymas, energijos vartojimas, DesignBuilder, pastato dinaminis energinis modeliavimas.

Keyword : indoor climate systems, energy consumption, DesignBuilder, building dynamic energy modelling

How to Cite
Maželis, T., & Džiugaitė-Tumėnienė, R. (2022). The impact of an office indoor climate system performance parameters on energy consumption. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 14. https://doi.org/10.3846/mla.2022.17220
Published in Issue
Aug 18, 2022
Abstract Views
335
PDF Downloads
304
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

DesignBuilder Software Ltd. (2018). DesignBuilder Dynamic Simulation Model (DSM) User Manual [Computer software]. https://designbuilder.co.uk/download/documents/71-designbuilder-dsm-manual-v5-4b/file

Džiugaitė-Tumėnienė, R., Mikučionienė, R., Streckienė, G., & Bielskus, J. (2021). Development and analysis of a dynamic energy model of an office using a Building Management System (BMS) and actual measurement data. Energies, 14(19), 6419. https://doi.org/10.3390/en14196419

Granderson, J., Lin, G., Singla, R., Fernandes, S., & Touzani, S. (2018). Field evaluation of performance of HVAC optimization system in commercial buildings. Energy and Buildings, 173, 577–586. https://doi.org/10.1016/j.enbuild.2018.05.048

Ignjatovič, M. G., Blagojevič, B. D., Stojilikovič, M. M., Mitrovič, D. M., & Andelkovič, A. S. (2016). Optimization of HVAC system operation based on a dynamic simulation tool. REHVA European HVAC Journal, 53, 56–62.

International Organization for Standardization. (2017). Energy performance of buildings – Indoor environmental quality – Part 1: Indoor environmental input parameters for the design and assessment of energy performance of buildings (ISO 177721:2017). Geneva, Switzerland.

Kim, H., & Hong, T. (2020). Determining the optimal set-point tem-perature considering both labor productivity and energy savng in an office building. Applied Energy, 276, 1–14. https://doi.org/10.1016/j.apenergy.2020.115429

Papadopoulos, S., Kontokosta, C. E., Vlachokostas, A., & Azar, E. (2019). Rethinking HVAC temperature setpoints in commercial buildings: The potential for zero-cost energy savings and comfort improvement in different climates. Building and Environment, 155, 350–359. https://doi.org/10.1016/j.buildenv.2019.03.062