Share:


Performance study of SC wall based on experiment and parametric analysis

    Qi Ge Affiliation
    ; Tao He Affiliation
    ; Feng Xiong Affiliation
    ; Peng Zhao Affiliation
    ; Yang Lu Affiliation
    ; Yang Liu Affiliation
    ; Ning Zhou Affiliation

Abstract

Reverse cyclic lateral testing was undertaken to investigate the seismic behavior of 1/4 scale steel-plate concrete (SC) composite walls. The experimental program involved seven SC wall pier specimens. A new chamber structure is proposed, using steel diaphragms to connect the two steel faceplates to each other and to divide the SC wall pier into two parts. Conventional wall specimens failed mainly by tensile fracture of the concrete at the junction of the wall side and wall base, crushing of the concrete at the toe of the wall, or buckling of the steel faceplate. Tearing of the welded joints at the steel faceplates and steel diaphragm, buckling of steel, steel diaphragms being pulled out, tensile fracture and crushing of the concrete were the main failure modes of the chamber structure walls. A parametric numerical analysis in ABAQUS was developed to investigate the effects of the stiffening rib, steel web amount, material strength, shear-span ratio, and axial compression ratio on the seismic response of SC walls. The chamber structure of the SC wall piers can improve the peak load, ductility, and energy-dissipating capacity. The steel faceplate thickness and stiffening ribs can improve the behavior of SC wall piers.

Keyword : steel-plate concrete, composite wall, cyclic lateral loading, chamber structure wall, parametric analysis, performance study

How to Cite
Ge, Q., He, T. ., Xiong, F. ., Zhao, P. ., Lu, Y. ., Liu, Y. ., & Zhou, N. . (2020). Performance study of SC wall based on experiment and parametric analysis. Journal of Civil Engineering and Management, 26(3), 227-246. https://doi.org/10.3846/jcem.2020.12181
Published in Issue
Mar 20, 2020
Abstract Views
1679
PDF Downloads
787
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

ACI 349 Committee. (2006). Code requirements for nuclear safety-related concrete structures (ACI 349-06) and commentary. Farmington Hills, MI.

Ali, A., Kim, D., & Cho, S. G. (2013). Modeling of nonlinear cyclic load behavior of Ishaped composite steel-concrete shear walls of nuclear power plants. Nuclear Engineering and Technology, 45(1), 89–98. https://doi.org/10.5516/NET.09.2011.055

American Concrete Institute (ACI). (2014). ACI 318 – Building code requirements for structural concrete and commentary. Farmington Hills, MI.

Anwar, H. K. M., & Wright, H. D. (2004). Experimental and theoretical behaviour of composite walling under in-plane shear. Journal of Constructional Steel Research, 60, 59–83. https://doi.org/10.1016/j.jcsr.2003.08.004

Board of KEPIC Policy Structural Committee. (2010). KEPIC SNG – SNG steel plate concrete structures. Seoul, Korea.

Booth, P. N., Varma, A. H., Malushte, S. R., & Johnson, W. H. (2007). Response of modular composite walls to combined thermal and mechanical load. In 19th International Conference on Structural Mechanics in Reactor Technology (SMiRT19). International Association for Structural Mechanics in Reactor Technology (IASMiRT). Toronto, Canada.

Booth, P. N., Varma, A. H., Sener, K., & Malushte, S. (2015). Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading. Nuclear Engineering and Design, 295, 817–828. https://doi.org/10.1016/j.nucengdes.2015.07.036

Braverman, J., Morante, R., & Hofmayer, C. (1997). Assessment of modular construction for safety related structures at advanced nuclear power plants (NUREG/CR-6486). U.S. Nuclear Regulatory Commission. Washington DC. https://doi.org/10.2172/464149

Bruhl, J., Varma, A. H., & Johnson, W. (2015a). Design of composite SC walls to prevent perforation from missile impact. International Journal of Impact Engineering, 75, 75–87. https://doi.org/10.1016/j.ijimpeng.2014.07.015

Bruhl, J., Varma, A. H., & Joo, M. M. (2015b). Static resistance function for steel-plate composite (SC) walls subjected to impactive loading. Nuclear Engineering and Design, 295, 843–859. https://doi.org/10.1016/j.nucengdes.2015.07.037

Chaudhary, S., Ali, A., Kim, D., & Cho, S. G. (2011). Seismic analysis of steel concrete composite walls of nuclear power plant structures. In 21th International Conference on Structural Mechanics in Reactor Technology (SMiRT21). International Association for Structural Mechanics in Reactor Technology (IASMiRT). New Delhi, India.

Choi, B. J., & Han, H. S. (2009). An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading. Steel and Composite Structures, 9(6), 519–534. https://doi.org/10.12989/scs.2009.9.6.519

Choi, B. J., Kim, W. K., Kim, W. B., & Kang, C. K. (2013). Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures. Steel and Composite Structures, 14(5), 473–491. https://doi.org/10.12989/scs.2013.14.5.473

DCD. (2011). Design control document for the AP1000. Washington, DC, USA: U.S. Nuclear Regulatory Commission. http://www.nrc.gov/reactors/new-reactors/design-cert/ap1000.html

DCD. (2012). Design control document for the US-APWR. Washington, DC, USA: U.S. Nuclear Regulatory Commission. http://www.nrc.gov/reactors/new-reactors/design-cert/apwr.html

Emori, K. (2002). Compressive and shear strength of concrete filled steel box wall. International Journal of Steel Structures, 2(1), 29–40.

Eom, T. S., Park, H. G., Lee, C. H., Kim, J. H., & Chang, I. H. (2009). Behavior of double skin composite wall subjected to in-plane cyclic loading. Journal of Structural Engineering, 135(10), 1239–1249. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000057

Epackachi, S. (2014). Analytical, numerical, and experimental studies on steel-concrete composite walls (PhD Dissertation). Department of Civil, Structural and Environmental Engineering, University at Buffalo. NY, USA.

Epackachi, S., Nguyen, N. H., Kurt, E. G., Whittaker, A. S., & Varma, A. H. (2013). An experimental study of the in-plane response of steel-concrete composite walls. In 22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT 22). San Francisco, CA, USA.

Epackachi, S., Nguyen, N. H., Kurt, E. G., Whittaker, A. S., & Varma, A. H. (2015a). In-plane seismic behavior of rectangular steel-plate composite wall piers. Journal of Structural Engineering, 141(7), 401–417. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001148

Epackachi, S., Whittaker, A. S., & Huang, Y. N. (2015b). Analytical modeling of rectangular SC wall panels. Journal of Constructional Steel Research, 105, 49–59. https://doi.org/10.1016/j.jcsr.2014.10.016

Epackachi, S., Whittaker, A. S., Varma, A. H., & Kurt, E. G. (2015c). Finite element modeling of steel-plate concrete composite wall piers. Engineering Structures, 100, 369–384. https://doi.org/10.1016/j.engstruct.2015.06.023

Fukumoto, T., Kato, B., Sato, K., Toyama, K., Kobayashi, M., Emori, K, Ishii K., & Sakamoto. M. (1987). Concrete filled steel bearing walls. Zurich: International Association for Bridge and Structural Engineering.

GB 50010-2010. (2010). Code for design of concrete structures. Beijing, China.

Hong, S. G., Kim, W., Lee, K. J., Hong, N. K., & Lee, D. H. (2010). Out-of-plane shear strength of steel-plate-reinforced concrete walls dependent on bond behavior. Journal of Disaster Research, 5(4), 385–394. https://doi.org/10.20965/jdr.2010.p0385

Huang, Z. Y., & Liew, J. Y. R. (2016). Numerical studies of steelconcrete-steel sandwich walls with J-hook connectors subjected to axial loads. Steel and Composite Structures, 21(3), 461–477. https://doi.org/10.12989/scs.2016.21.3.461

Japanese Electric Association Nuclear Standards Committee. (2009). JEAC 4618 – Technical code for seismic design of steel plate reinforced concrete structures: buildings and structures. Tokyo, Japan.

Ji, X. D., Jiang, F. M., & Qian, J. R. (2013). Seismic behavior of steel tube–double steel plate–concrete composite walls: Experimental tests. Journal of Constructional Steel Research, 86, 17–30. https://doi.org/10.1016/j.jcsr.2013.03.011

Ju, X. C., & Zeng, Z. B. (2015). Study on uplift performance of stud connector in steel-concrete composite structures. Steel and Composite Structures, 18(5), 1279–1290. https://doi.org/10.12989/scs.2015.18.5.1279

Kim, W. B., & Choi, B. J. (2011). Shear strength of connections between open and closed steel-concrete composite sandwich structures. Steel and Composite Structures, 11(2), 168–181. https://doi.org/10.12989/scs.2011.11.2.169

Kim, W., Lee, S. J., Jung, R. Y., & Kim, M. (2009, August). Damping values for seismic design of nuclear power plant SC structures. In 21th International Conference on Structural Mechanics in Reactor Technology (SMiRT20). Espoo, Finland.

Kurt, E. G., Varma, A. H., Booth, P. N., & Whittaker, A. (2016). In-plane behavior and design of rectangular SC wall piers without boundary elements. Journal of Structural Engineering, 142(6), 04016026. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001481

Kurt, E. G., Varma, A. H., Booth, P., & Whittaker, A. S. (2013). SC walls piers and basemat connections: Numerical investigation of behavior and design. In 22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT 22). San Francisco, CA, USA.

Link, R. A., & Elwi, A. E. (1995). Composite concrete-steel plate walls: Analysis and behavior. Journal of Structural Engineering, 121(2), 260–271. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(260)

Nguyen, N. H., & Whittaker, A. S. (2017). Numerical modelling of steel-plate concrete composite shear walls. Engineering Structures, 150, 1–11. https://doi.org/10.1016/j.engstruct.2017.06.030

Oduyemi, T. O. S., & Wright, H. D. (1989). An experimental investigation into the behaviour of double-skin sandwich beams. Journal of Constructional Steel Research, 14, 197–220. https://doi.org/10.1016/0143-974X(89)90073-4

Ozaki, M., Akita, S., Oosuga, H., Nakayama, T., & Adachi, N. (2004). Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear. Nuclear Engineering and Design, 228, 225–244. https://doi.org/10.1016/j.nucengdes.2003.06.010

Remennikov, A. M., Kong, S. Y., & Uy, B. (2013). The response of axially restrained noncomposite steel–concrete–steel sandwich panels due to large impact loading. Engineering Structures, 49, 806–818. https://doi.org/10.1016/j.engstruct.2012.11.014

Roy, R., & Craig, J. (1981). Structural dynamics. Wiley.

Schlaseman, C. (2004). Application of advanced construction technologies to new nuclear power plants (MPR-2610, Revision 2). Washington, DC, USA. http://pbadupws.nrc.gov/docs/ML0931/ML093160836.pdf

Sener, K. C., & Varma, A. H. (2014). Steel-plate composite walls: experimental database and design for out-of-plane shear. Journal of Constructional Steel Research, 100, 197–210. https://doi.org/10.1016/j.jcsr.2014.04.014

Sener, K., Varma, A. H., & Seo, J. (2016). Experimental and numerical investigations of the shear behavior of steel-plate composite (SC) beams without shear reinforcement. Engineering Structures, 127, 495–509. https://doi.org/10.1016/j.engstruct.2016.08.053

Sener, K., Varma, A. H., Booth, P. N., & Fujimoto, R. (2015). Seismic behavior of a containment internal structure consisting of composite SC walls. Nuclear Engineering and Design, 295, 804–816. https://doi.org/10.1016/j.nucengdes.2015.07.038

Sener, K., Varma, A. H., Malushte, S. R., & Coogler, K. (2013). Experimental database of SC composite specimens tested under out-of-plane shear loading. In 22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT22). International Association for Structural Mechanics in Reactor Technology (IASMiRT). San Francisco, California, USA.

Seo, J., Varma, A. H., Sener, K., & Ayhan, D. (2016). Steel-plate composite (SC) walls: In-plane shear behavior, database, and design. Journal of Constructional Steel Research, 119, 202–215. https://doi.org/10.1016/j.jcsr.2015.12.013

Sohel, K. M. A., & Liew, J. Y. R. (2014). Behavior of steel–concrete–steel sandwich slabs subject to impact load. Journal of Constructional Steel Research, 100, 163–175. https://doi.org/10.1016/j.jcsr.2014.04.018

Takeuchi, M., Narikawa, M., Matsuo, I., Hara, K., & Usami, S. (1998). Study on a concrete filled structure for nuclear power plants. Nuclear Engineering and Design, 179(2), 209–223. https://doi.org/10.1016/S0029-5493(97)00282-3

Usami, S., Akiyama, H., Narikawa, M., Hara, K., Takeuchi, M., & Sasaki, N. (1995). Study on a concrete filled steel structures for nuclear power plants (part 2). Comprehensive loading tests on wall members. In 13th International Conference on Structural Mechanics in Reactor Technology (SMiRT 13). Porto Alegre, Brazil.

Varma, A. H., & Sener, K. C. (2013). Misubishi Heavy Industries. Lateral load behavior of a containment internal structure consisting of composite SC walls. In 22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT 22). San Francisco, CA, USA.

Varma, A. H., Malushte, S. R., Sener, K. C., & Booth, P. N. (2009). Analysis and design of modular composite walls for combined thermal and mechanical loading. In 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT19). International Association for Structural Mechanics in Reactor Technology (IASMiRT). Espoo, Finland. https://doi.org/10.1061/41031(341)103

Varma, A. H., Malushte, S. R., Sener, K., Booth, P. N., & Coogler, K. (2011a). Steel-plate composite (SC) walls: Analysis and design including thermal effects. In 21th International Conference on Structural Mechanics in Reactor Technology (SMiRT21). International Association for Structural Mechanics in Reactor Technology (IASMiRT). New Delhi, India.

Varma, A. H., Malushte, S., Sener, C., & Lai, Z. (2014). Steelplate composite (SC) walls for safety related nuclear facilities: Design for in-plane force and out-of-plane moments. Nuclear Engineering and Design, 269, 240–249. https://doi.org/10.1016/j.nucengdes.2013.09.019

Varma, A. H., Sener, K. C., Zhang, K., Coogler, K., & Malushte, S. R. (2011b). Out-of-plane shear behavior of SC composite structures. In 21st International Conference on Structural Mechanics in Reactor Technology (SMiRT 21). New Delhi, India.

Wright, H. (1998). The axial load behaviour of composite walling. Journal of Constructional Steel Research, 45(3), 353–375. https://doi.org/10.1016/S0143-974X(97)00030-8

Zhang, K., Varma, A. H., Malushte, S., & Gallocher, S. (2014). Effects of shear connectors on the local buckling and composite action in steel concrete composite walls. Nuclear Engineering and Design, 269, 231–239. https://doi.org/10.1016/j.nucengdes.2013.08.035

Zhao, W., & Guo, Q. (2018). Experimental study on impact and post-impact behavior of steel-concrete composite panels. Thin-Walled Structures, 130, 405–413. https://doi.org/10.1016/j.tws.2018.06.012