Share:


Stressing state characteristics of reinforcement concrete box-girders strengthened with carbon fiber reinforced plastic

    Hengheng Xiao Affiliation
    ; Jun Shi Affiliation
    ; Junran Liu Affiliation
    ; Kaikai Zheng Affiliation
    ; Guangchun Zhou Affiliation

Abstract

This paper investigates structural performance of five reinforcement concrete (RC) box-girders under a combination loading of bending, shear and torsion, applying the structural stressing state theory. The measured strain data is modeled as generalized strain energy density (GSED) to characterize the structural stressing state mode. Then the Mann-Kendall (M-K) criterion is innovatively applied to detect the leap characteristics of RC box-girders’ stressing state from the E’-T curves, deriving the new definition of structural failure load. Furthermore, the reinforcement effects of different Carbon Fiber Reinforced Plastic (CFRP) wrapping schemes on the behaviors of experimental RC box-girders are revealed through comparing strain modes of stirrup and longitudinal reinforcement. Finally, the method of numerical shape function is applied to reasonably expand the limited strain data for further exploring the strain distribution of cross section and analyzing the stressing state characteristics of the RC box-girders. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement scheme.


First published online 29 November 2019

Keyword : stressing state, leap, failure load, stressing state mode, CFRP, reinforcement concrete box-girder

How to Cite
Xiao, H., Shi, J., Liu, J., Zheng, K., & Zhou, G. (2020). Stressing state characteristics of reinforcement concrete box-girders strengthened with carbon fiber reinforced plastic. Journal of Civil Engineering and Management, 26(1), 1-13. https://doi.org/10.3846/jcem.2019.11518
Published in Issue
Jan 6, 2020
Abstract Views
1823
PDF Downloads
730
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aidoo, J., Harries, K. A., & Petrou M. F. (2004). Fatigue behavior of carbon fiber reinforced polymer-strengthened reinforced concrete bridge girders. Journal of Composites for Construction, 8(6), 501-509. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(501)

Aidoo, J., Harries, K. A., & Petrou, M. F. (2006). Full-scale experimental investigation of repair of reinforced concrete interstate bridge using CFRP materials. Journal of Bridge Engineering, 11(3), 350-358. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:3(350)

Ali, N., Samad, A. A. A., Mohamad, N., & Jayaprakash, J. (2013). Shear behaviour of pre-cracked continuous beam repaired using externally bonded CFRP strips. Procedia Engineering, 53, 129-144. https://doi.org/10.1016/j.proeng.2013.02.019

Al-Mahaidi, R., & Hii, A. K. Y. (2007). Bond behaviour of CFRP reinforcement for torsional strengthening of solid and boxsection RC beams. Composites Part B (Engineering), 38(5-6), 720-731. https://doi.org/10.1016/j.compositesb.2006.06.018

Al-Zaid, R. A., El-Sayed, A. K., Al-Negheimish, A. I., Shuraim, A. B., & Alhozaimy, A. M. (2014). Strengthening of structurally damaged wide shallow RC beams using externally bonded CFRP plates. Latin American Journal of Solids and Structures, 11(6), 946-965. https://doi.org/10.1590/S1679-78252014000600003

Andersen, S., & Andersen, L. (2010). Analysis of spatial interpolation in the material-point method. Computers & Structures, 88(7-8), 506-518. https://doi.org/10.1016/j.compstruc.2010.01.004

Barnes, R. A., & Mays, G. C. (1999). Fatigue performance of concrete beams strengthened with CFRP plates. Journal of Composites for Construction, 3(2), 63-72. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:2(63)

Bousselham, A., & Chaallal, O. 2013. Experimental investigations on the influence of size on the performance of RC T-beams retrofitted in shear with CFRP fabrics. Engineering Structures, 56, 1070-1079. https://doi.org/10.1016/j.engstruct.2013.06.028

Esfahani, M. R., Kianoush, M. R., & Tajari A. R. (2007). Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets. Engineering Structures, 29(10), 2428-2444. https://doi.org/10.1016/j.engstruct.2006.12.008

Fagone, M., & Ranocchiai, G. (2018). Experimental investigation on out-of-plane behavior of masonry panels strengthened with CFRP sheets. Composites Part B (Engineering), 150, 14-26. https://doi.org/10.1016/j.compositesb.2018.05.031

Foster, R. M., Brindley, M., Lees, J. M., Ibell, T. J., Morley, C. T., Darby, A. P., & Evernden, M. C. (2016). Experimental investigation of reinforced concrete T-beams strengthened in shear with externally bonded CFRP sheets. Journal of Composites for Construction, 21(2), 04016086. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000743

Hii, A. K. Y., & Al-Mahaidi R. (2007). Torsional capacity of CFRP strengthened reinforced concrete beams. Journal of Composites for Construction, 11(1), 71-80. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:1(71)

Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107-121. https://doi.org/10.1029/WR018i001p00107

Huang, Y., Zhang, Y., Zhang, M., & Zhou, G. (2014). Method for predicting the failure load of masonry wall panels based on generalized strain-energy density. Journal of Engineering Mechanics, 140(8), 04014061. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000771

Jiang, H., Zhang, T. P., & Tian, L. Q. (2018). Review of FRP reinforced damaged RC beams. Low Temperature Architecture Technology, 40(9), 64-66.

Kendall, M. G. (1957). Rank correlation methods. Biometrika, 44, 298. https://doi.org/10.2307/2333282

Leung, C. K. Y., Chen, Z., Lee, S., Ng, M., Xu, M., & Tang, J. (2007). Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips. Journal of Composites for Construction, 11(5), 487-496. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(487)

Li, J., & Heap, A. D. (2011). Review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(30), 228-241. https://doi.org/10.1016/j.ecoinf.2010.12.003

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 3(3), 245-259. https://doi.org/10.2307/1907187

Nair, A., Cai, C. S., Kong, X., & Hou, S. (2019). Bridge retrofitting using FRP-wrapped balsa wood deck: Experimental study and field evaluation. Journal of Aerospace Engineering, 32(5), 04019065. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001057

Orbanich, C. J., Dominguez, P. N., & Ortega, N. F. (2012). Strengthening and repair of concrete foundation beams with carbon fiber composite materials. Materials and Structures, 45(11), 1693-1704. https://doi.org/10.1617/s11527-012-9866-6

Pham, H., & Al-Mahaidi, R. (2004). Experimental investigation into flexural retrofitting of reinforced concrete bridge beams using FRP composites. Composite Structures, 66(1-4), 617-625. https://doi.org/10.1016/j.compstruct.2004.05.010

Rafi, M. M., Nadjai, A., Ali, F., & Talamona, D. (2008). Aspects of behaviour of CFRP reinforced concrete beams in bending. Construction and Building Materials, 22(3), 277-285. https://doi.org/10.1016/j.conbuildmat.2006.08.014

Rahai, A. R., & Saberi, M. R. (2011). Experimental and numerical investigation of damaged concrete beams strengthened with FRP composed of different fibres and resins. Structural Design of Tall and Special Buildings, 20(8), 972-985. https://doi.org/10.1002/tal.570

Samad, A. A. A., Ali, N., Mohamad, N., Jayaprakash, J., Tee, K. F., & Mendis, P. (2017). Shear strengthening and shear repair of 2-span continuous RC beams with CFRP strips. Journal of Composite for Construction, 21(3), 04016099. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000756

Shahawy, M. A., Arockiasamy, M., Beitelman, T., & Sowrirajan, R. (1996). Reinforced concrete rectangular beams strengthened with CFRP laminates. Composites Part B Engineering, 27(3-4), 225-233. https://doi.org/10.1016/1359-8368(95)00044-5

Shi, J., Li, W. T., Zheng K. K., Yang, K., & Zhou, G. (2018). Experimental investigation into stressing state characteristics of large-curvature continuous steel box-girder bridge model. Construction and Building Materials, 178, 574-583. https://doi.org/10.1016/j.conbuildmat.2018.05.155

Shi, J., Zheng, K. K., Tan, Y. Q., Yang, K., & Zhou, G. (2019). Response simulating interpolation methods for expanding experimental data based on numerical shape functions. Computers & Structures, 218, 1-8. https://doi.org/10.1016/j.compstruc.2019.04.004

Yang, D. S., Park, S. K., & Neale, K. W. (2009). Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites. Composite Structures, 88(4), 497-508. https://doi.org/10.1016/j.compstruct.2008.05.016

Yang, G. F. (2016). Research of CFRP reinforced concrete box girder bending shear and composite stress (MS thesis). Lanzhou Jiaotong University (in Chinese).

Zhou, G. C., Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (2006). Cellular automata model for predicting the failure pattern of laterally loaded masonry wall panels. Journal of Computing in Civil Engineering, 20(6), 400-409. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:6(400)

Zhu, J. T., Wang, X. L., Kang, X.-D., Li, K. (2016). Analysis of interfacial bonding characteristics of CFRP-concrete under fatigue loading. Construction and Building Materials, 126, 823-833. https://doi.org/10.1016/j.conbuildmat.2016.06.071