New approach to create more effective teams in the innovation process in enterprises
Abstract
The subject-related literature provided information about the skills, education, and formal competencies required to join teams working on the innovation process. According to findings presented in this article, the previous studies have investigated insufficiently the gender-related issues in the decisions of managers who involve specialists in the innovation process. Thus, the purpose of this research was to identify, examine, and describe differences in the participation of men and women in the innovation process, considering their personal characteristics, attitudes, and behaviours. The research covered 1,164 innovative companies – beneficiaries of the European Union Cohesion Policy of 2007–2013. The survey was distributed independently to women and men participating in innovative activities in the researched companies. Two independent responses were received from each company; thus, two independent data samples were created. Both data composition and preliminary analysis adhere to the requirements of Principal Component Analysis. The results allow for the new design proposal to increase the effectiveness of teams working on innovation-focused tasks. In addition to education and experience, managers can now consider personal characteristics and better select women and men to drive innovation.
Keyword : innovation management, innovation development, gender research, creation effective teams, decision making in innovative activity, process of innovation, manage new source of innovation progress
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abukhait, R., Bani-Melhem, S., & Zeffane, R. (2019). Empowerment, knowledge sharing and innovative behaviours: Exploring gender differences. International Journal of Innovation Management, 23(1), 1950006-1–1950006-28. https://doi.org/10.1142/S1363919619500063
Acklin, C. (2010). Design‐driven innovation process model. Design Management Journal, 5(1), 50–60. https://doi.org/10.1111/j.1948-7177.2010.00013.x
Alsos, G. A., Ljunggren, E., & Hytti, U. (2013). Gender and innovation: State of the art and a research agenda. International Journal of Gender and Entrepreneurship, 5(3), 236–256. https://doi.org/10.1108/IJGE-06-2013-0049
Alvarez, J., Martinez-Roman, R., Munoz-Mari, J., & Camps-Valls, G. (2018). Digital signal processing with Kernel methods. Willey & Sons.
Amabile, T. M., Conti, R., Coon, H., Lazenby, J., & Herron, M. (1996). Assessing the work environment for creativity. Academy of Management Journal, 39(5), 1154–1184. https://doi.org/10.2307/256995
Apesteguia, J., Azmat, G., & Iriberri, N. (2012). The impact of gender composition on team performance and decision-making: Evidence from the field. Management Science, 58(1), 78–93. https://doi.org/10.1287/mnsc.1110.1348
Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3(1), 77–85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x
Blake, M. K., & Hanson, S. (2005). Rethinking innovation: context and gender. Environment and Planning A, 37, 681–701. https://doi.org/10.1068/a3710
Brieger, S., & Francoeur, C. (2019). Empowering women: The role of emancipative forces in board gender diversity. Journal of Business Ethics, 155(2), 495–511. https://doi.org/10.1007/s10551-017-3489-3
Carrasco, I. (2014). Gender gap in innovation: an institutionalist explanation. Management Decision, 52(2), 410–424. https://doi.org/10.1108/MD-07-2012-0533
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10
Cattell, R. B. (1978). The scientific use of factor analysis. Plenum.
Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd ed.). Lawrence Erlbaum Associates, Inc.
Cooper, R. (2012). The gender gap in union leadership in Australia: A qualitative study. Journal of Industrial Relations, 54(2), 131–146. https://doi.org/10.1177/0022185612437836
Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98–104. https://doi.org/10.1037/0021-9010.78.1.98
Costello, A., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical assessment. Research & Evaluation, 10(7), 1–9.
Cramer, D. (1998). Fundamental statistics for social research. Routledge.
Cramer, D., & Howitt, D. (2004). The SAGE dictionary of statistics. SAGE. https://doi.org/10.4135/9780857020123
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. https://doi.org/10.1007/BF02310555
Cronbach, L. J. (1970). Essentials of psychological testing. Harper & Row.
Cronbach, L. J., & Shavelson, R. J. (2004). My current thoughts on coefficient alpha and successor procedures. Educational and Psychological Measurement, 64(3), 391–418. https://doi.org/10.1177/0013164404266386
Cropley, D., & Cropley, A. (2015). The psychology of innovation in organizations. Cambridge University Press. https://doi.org/10.1017/CBO9781316104811
Danilda, I., & Thorslund, J. G. (Eds.). (2011). Innovation and Gender. Stockholm, VInnoVA-Verket för Innovationssystem/Swedish Governmental Agency for Innovation System.
Demos, V., & Segal, M. (Eds.). (2017). Gender panic, gender policy (advances in gender research). Emerald Publishing. https://doi.org/10.1108/S1529-2126201724
DeVellis, R. F. (2012). Scale development: Theory and applications. Sage.
Dien, J., Beal, D. J., & Berg, P. (2005). Optimizing principal components analysis of event-related potentials: Matrix type, factor loading weighting, extraction, and rotations. Clin Neurophysiol, 116(8), 1808–1825. https://doi.org/10.1016/j.clinph.2004.11.025
DiStefano, Ch., Zhu, M., & Mîndrilă, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1–11.
Doane, D. P., & Seward, L. E. (2011). Measuring skewness. Journal of Statistics Education, 19(2), 1–18. https://doi.org/10.1080/10691898.2011.11889611
Du Vall, M., & Majorek, M. (2015). Taking gender seriously Present trends and recommendations for scientific environment. In E. Okoń-Hoodyńska & A. Zachorowska-Mazurkiewicz (Eds.), Statistical profiles of women’s and men’s status in the economy, science and society (pp. 47–66). Jagiellonian University Press.
Dufwenberg, M., & Muren, A. (2006). Gender composition in teams. Journal of Economic Behavior and Organization, 61(1), 50–54. https://doi.org/10.1016/j.jebo.2005.01.002
Dylag, A., & Szafranski, M. (2015). Contemporary value profiles of women and men – Polish pilot survey. In E. Okoń-Hoodyńska & A. Zachorowska-Mazurkiewicz (Eds.), Statistical profiles of women’s and men’s status in the economy, science and society (pp. 145–164). Jagiellonian University Press.
Dziuban, C. D., & Shirkey, E. C. (1974). When is a correlation matrix appropriate for factor analysis? Psychological Bulletin, 81, 358–361. https://doi.org/10.1037/h0036316
Espinosa, A., & Walker, J. (2017). A complexity approach to sustainability. Theory and practice. World Scientific Publishing Europe Ltd. https://doi.org/10.1142/q0060
Field, A. (2012). Discovering statistics using IBM SPSS statistics. SAGE.
Fogelberg, E. A. (2014). A gender perspective as a trigger and facilitator of innovation. International Journal of Gender and Entrepreneurship, 6(2), 163–180. https://doi.org/10.1108/IJGE-09-2012-0045
Foss, L., Woll, K., & Moilanen, M. (2013). Creativity and implementations of new ideas: Do organizational structure, work environment and gender matter? International Journal of Gender and Entrepreneurship, 5(3), 298–322. https://doi.org/10.1108/IJGE-09-2012-0049
Frankl, V. (1967). Psychotherapy and Existentialism. Washington Square Press. https://doi.org/10.1037/h0087982
Frankl, V. (1969). The will to meaning. Meridian Books.
Geissdoerfer, M., Bocken, N., & Hultink, E. (2016). Design thinking to enhance the sustainable business modelling process – A workshop based on a value mapping process. Journal of Cleaner Production, 135, 1–31. https://doi.org/10.1016/j.jclepro.2016.07.020
George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. Allyn & Bacon.
Ghaye, T., & Gunnarsson, E. (2009). Creating cultures of appreciation, organisational innovation through employee well-being. In M. Döös & L. Wilhelmson (Eds.), Organising work for innovation and growth (pp. 23–38). Vinnova.
Hair, J. F. Jr., Black, W. C., Babin, B. J., & Anderson. R. E. (2014). Multivariate data analysis. Pearson.
Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. Educational and Psychological Measurement, 66, 393–416. https://doi.org/10.1177/0013164405282485
Hunt, J., Herman, H., & Munroe, D. J. (2013). Why are women underrepresented amongst patentees? Research Policy, 42, 831–843. https://doi.org/10.1016/j.respol.2012.11.004
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151. https://doi.org/10.1177/001316446002000116
Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measurement, 34(1), 111–117. https://doi.org/10.1177/001316447403400115
Kim, H.-J., (2008). Common factor analysis versus principal component analysis: Choice for symptom cluster research. Asian Nursing Research, 2(1), 17–24. https://doi.org/10.1016/S1976-1317(08)60025-0
Kline, P. (1994). An easy guide to factor analysis. SAGE.
Kline, P. (2000). The handbook of psychological testing. Routledge.
Kopycinska, D. (2015). The professional situation of women and men in Poland – declarations and reality. In E. Okoń-Hoodyńska, & A. Zachorowska-Mazurkiewicz (Eds.), Statistical profiles of women’s and men’s status in the economy, science and society (pp. 91–106). Jagiellonian University Press.
Kunze, A., & Miller, A. R. (2017). Women helping women? Evidence from private sector data on workplace hierarchies. Review of Economics and Statistics, 99(5), 769–775. https://doi.org/10.1162/REST_a_00668
Larsen, R., & Warne, R. T. (2010). Estimating confidence intervals for eigenvalues in exploratory factor analysis. Behavior Research Methods, 42, 871–876. https://doi.org/10.3758/BRM.42.3.871
Lindberg, M., & Schiffbaenker, H. (2013). Gender and innovation. In E. G. Carayannis (Ed.), Encyclopedia of creativity, invention, innovation and entrepreneurship (pp.782–789). Springer. https://doi.org/10.1007/978-1-4614-3858-8_454
Lindberg, M., Danilda, I., & Torstensson, B. M. (2012). Women resource centers – a creative knowledge environment of quadruple helix. Journal of the Knowledge Economy, 3(1), 36–52. https://doi.org/10.1007/s13132-011-0053-8
MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84–99. https://doi.org/10.1037/1082-989X.4.1.84
Messerschmitt, W., Messner, A., Connell, R., & Martin, Y. (Eds.). (2018). Gender Reckonings: New social theory and research. NYU Press. https://doi.org/10.2307/j.ctt1pwtb3r
Nählinder, J., Tillmar, M., & Wigren, C. (2015). Towards a gender-aware understanding of innovation, a three-dimensional route. International Journal of Gender and Entrepreneurship, 7(1), 66–86. https://doi.org/10.1108/IJGE-09-2012-0051
Norman, G. R., & Streiner, D. L., (2003). Statistics. PDQ.
O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396–402. https://doi.org/10.3758/BF03200807
OECD. (2005). Oslo manual: Guidelines for collecting and interpreting innovation data. OECD Publisher.
Østergaard, C. R., Timmermans. B., & Kristinsson, K. (2011). Does a different view create something new? The effect of employee diversity on innovation. Research Policy, 40(3), 500–510. https://doi.org/10.1016/j.respol.2010.11.004
Pecis, L. (2016). Doing and undoing gender in innovation. Femininities and masculinities in innovation processes. Human Relations, 69(11), 2117–2140. https://doi.org/10.1177/0018726716634445
Pett, M. A., Lackey, N. R., & Sullivan, J. J. (2003). Making sense of factor analysis: The use of factor analysis for instrument development in health care research. SAGE. https://doi.org/10.4135/9781412984898
Pettersson, K. (2007). Men and male as the norm? A gender perspective on innovation policies in Denmark, Finland and Sweden. Nordregio.
Poutanen, S., & Kovalainen, A. (2013). Gendering innovation process in an industrial plant, revisiting tokenism, gender and innovation. International Journal of Gender and Entrepreneurship, 5(3), 257–274. https://doi.org/10.1108/IJGE-09-2012-0054
Ranga, M., & Etzkowitz, H. (2010). Athena in the world of techne: The gender dimension of technology, innovation and entrepreneurship. Journal of Technology, Management & Innovation, 5(1), 1–12. https://doi.org/10.4067/S0718-27242010000100001
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolomogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.
Reutzel, C. R., Collins, J. D., & Belsito, C. A. (2018). Leader gender and firm investment in innovation. Gender in Management, 33(6), 430–450. https://doi.org/10.1108/GM-05-2017-0066
Richardson, K. (2008). Managing complex organizations: Complexity thinking and the science and art of management. E:CO, 10(2), 13–26.
Rothwell, R. (1994). Industrial innovation: Success, strategy, trends. In R. Rothwell & M. Dogson (Eds.), The Handbook of industrial innovation, s. 41. Edward Elgar Publishing.
Salk, R. H., Hyde, J. S., & Abramson, L.Y. (2017). Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychological Bulletin, 143(8), 783–822. https://doi.org/10.1037/bul0000102
Sawyer, K. (2012). Explaining creativity: The science of human innovation. Oxford University press.
Schumpeter, J. A. (1934). The theory of economic development. Oxford University Press.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (Complete samples). Biometrika, 52(3/4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
Sierotowicz, T. (2015). Patent activity as an effect of the research and development of the business enterprise sectors in the countries of the European Union. Journal of International Studies, 8(2), 31–43. https://doi.org/10.14254/2071-8330.2015/8-2/9
Skarzynski, P., & Gibson, R. (2013). Innovation to the core: A blueprint for transforming the way your company innovates. Harvard Business Press.
Smith, S. (2013). Digital signal processing. Elsevier Science.
Snook, S. C., & Gorsuch, R. L. (1989). Principal component analysis versus common factor analysis: A Monte Carlo study. Psychological Bulletin, 106, 148–154. https://doi.org/10.1037/0033-2909.106.1.148
Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient alpha and internal consistency. Journal of Personality Assessment, 80, 99–103. https://doi.org/10.1207/S15327752JPA8001_18
Streiner, D. L., Norman, G. R., & Cairney, J. (2015). Health measurement scales: A practical guide to their development and use. Oxford University Press. https://doi.org/10.1093/med/9780199685219.001.0001
Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Allyn & Bacon.
Tidd, J., & Bessant, J. (2017). Managing innovation: Integrating technological, market and organizational change. John Willey & Soons.
Twiss, B. C. (1995). Managing technological innovation. Pitman Publishing.
Ye, D., Gudko, B., & Fangsheng, D. (2019). The direct and indirect impact of gender diversity in new venture teams on innovation performance. Entrepreneurship Theory and Practice, 43(3), 505–528. https://doi.org/10.1177/1042258718807696
Zachorowska-Mazurkiewicz, A. (2016). Praca kobiet. Perspektywa ekonomii głównego nurtu i ekonomii feministycznej. Jagiellonian University Press.
Zinbarg, R., Yovel, I., Revelle, W., & McDonlad, R. (2006). Estimating generalizability to a latent variable common to all of a scale’s indicators: A comparison of estimators for ωh. Applied Psychological Measurement, 30(2), 121–144. https://doi.org/10.1177/0146621605278814