The link between carbon emissions, agricultural output and industrial output: evidence from South Africa
Abstract
This study seeks to establish the relationship between carbon emissions, agricultural output and industrial output in South Africa. It uses data from 1960 to 2017 based on an annual frequency, giving a total of 58 annual observations. The Autoregressive Distributed Lag technique is employed to estimate the model on a bivariate basis. The evidence shows that carbon emissions are not influenced by agricultural and industrial output. Conversely, agricultural output is influenced by carbon emissions and industrial output. The results suggest that climate change resulting from carbon emissions has led to reduced agricultural output, adversely affecting food security. The significant relationship between industrial and agricultural output suggests that a properly functioning industrial sector will cause an increase in the agricultural output. The study’s findings have implications for climate change and manufacturing policies in South Africa.
Keyword : agricultural output, carbon emissions, climate change, CO2, greenhouse gases, industrialization, industrial output
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alam, M. M., Murad, M. W., Noman, A. H. M., & Ozturk, I. (2016). Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 70, 466-479. https://doi.org/10.1016/j.ecolind.2016.06.043
Altieri, M. A., & Nicholls, C. I. (2017). The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change, 140(1), 33-45. https://doi.org/10.1007/s10584-013-0909-y
Apergis, N., & Ozturk, I. (2015). Testing the Environmental Kuznets Curve hypothesis in Asian countries. Ecological Indicators, 52, 16-22. https://doi.org/10.1016/j.ecolind.2014.11.026
Arshed, N. (2014). A manual for ARDL approach to co-integration. Retrieved from https://nomanarshed.wordpress.com/2014/11/16/a-manual-for-ardl-approach-to-cointegration/
Asumadu-Sarkodie, S., & Owusu, P. A. (2016). The relationship between carbon dioxide and agriculture in Ghana: A comparison of VECM and ARDL model. Environmental Science and Pollution Research, 23(11), 10968-10982. https://doi.org/10.1007/s11356-016-6252-x
Awokuse, T. O., & Xie, R. (2015). Does agriculture really matter for economic growth in developing countries? Canadian Journal of Agricultural Economics/Revue Canadienne d’agroeconomie, 63(1), 77-99. https://doi.org/10.1111/cjag.12038
Bai, Y., Deng, X., Jiang, S., Zhao, Z., & Miao, Y. (2018). Relationship between climate change and lowcarbon agricultural production: A case study in Hebei Province, China. Ecological Indicators, 15, 438-447. https://doi.org/10.1016/j.ecolind.2018.04.003
Begum, R. A., Sohag, K., Abdullah, S. M. S., & Jaafar, M. (2015). CO2 emissions, energy consumption, economic and population growth in Malaysia. Renewable and Sustainable Energy Reviews, 41, 594601. https://doi.org/10.1016/j.rser.2014.07.205
Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Agricultural production and greenhouse gas emissions from world regions – the major trends over 40 years. Global Environmental Change, 37, 43-55. https://doi.org/10.1016/j.gloenvcha.2015.12.004
Burke, P. J., Shahiduzzaman, M., & Stern, D. I. (2015). Carbon dioxide emissions in the short run: The rate and sources of economic growth matter. Global Environmental Change, 33, 109-121. https://doi.org/10.1016/j.gloenvcha.2015.04.012
Chang, N. (2015). Changing industrial structure to reduce carbon dioxide emissions: a Chinese application. Journal of Cleaner Production, 103, 40-48. https://doi.org/10.1016/j.jclepro.2014.03.003
Chen, W., Gao, P., & He, J. (2004). Impacts of future carbon emission reductions on the Chinese GDP growth. Journal of Tsinghua University (Science and Technology), 44(6), 744-747.
Chen, Y. H. H., & Timilsina, G. R. (2012). Economic implications of reducing carbon emissions from energy use and industrial processes in Brazil. The World Bank, Washington, DC. https://doi.org/10.1596/1813-9450-6135
Clark, M., & Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12(6), 064016. https://doi.org/10.1088/1748-9326/aa6cd5
Cole, C. V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Mosier, A., Paustian, K., Rosenberg, N., Sampson, N., Sauerbeck, D., & Zhao, Q. (1997). Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutrient Cycling in Agroecosystems, 49(1-3), 221-228. https://doi.org/10.1023/A:1009731711346
Cole, V., Cerri, C., Minami, K., Mosier, A., Rosenberg, N., Sauerbeck, D., ... & Heinemeyer, O. (1995). Agricultural options for mitigation of greenhouse gas emissions. In Climate Change (pp. 745-771). Cambridge University Press.
Davis, K. F., Gephart, J. A., Emery, K. A., Leach, A. M., Galloway, J. N., & D’Odorico, P. (2016). Meeting future food demand with current agricultural resources. Global Environmental Change, 39, 125-132. https://doi.org/10.1016/j.gloenvcha.2016.05.004
de Souza, J. P. A. (2015). Evidence of growth complementarity between agriculture and industry in developing countries. Structural Change and Economic Dynamics, 34, 1-18. https://doi.org/10.1016/j.strueco.2015.05.001
Dinda, S. (2004). Environmental Kuznets Curve hypothesis: a survey. Ecological Economics, 49(4), 431455. https://doi.org/10.1016/j.ecolecon.2004.02.011
Du, Q., Zhou, J., Pan, T., Sun, Q., & Wu, M. (2019). Relationship of carbon emissions and economic growth in China’s construction industry. Journal of Cleaner Production, 220, 99-109. https://doi.org/10.1016/j.jclepro.2019.02.123
Fais, B., Sabio, N., & Strachan, N. (2016). The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets. Applied Energy, 162, 699-712. https://doi.org/10.1016/j.apenergy.2015.10.112
Feig, G. T., Joubert, W. R., Mudau, A. E., & Monteiro, P. M. S. (2017). South African carbon observations: CO2 measurements for land, atmosphere and ocean. South African Journal of Science, 113 (11/12), 1-4. https://doi.org/10.17159/sajs.2017/a0237
Friel, S., Dangour, A. D., Garnett, T., Lock, K., Chalabi, Z., Roberts, I., ... & Haines, A. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture. The Lancet, 374(9706), 2016-2025. https://doi.org/10.1016/S0140-6736(09)61753-0
Follett, R. F. (1993). Global climate change, US agriculture, and carbon dioxide. Journal of Production Agriculture, 6(2), 181-190. https://doi.org/10.2134/jpa1993.0181
Gold, M. V. (2016). Sustainable agriculture: the basics. CRC Press.
Goldbatt. (2018). Agriculture: facts and trends. South Africa. Retrieved from http://awsassets.wwf.org.za/downloads/facts_brochure_mockup_04_b.pdf
Gollin, D., Jedwab, R., & Vollrath, D. (2016). Urbanization with and without industrialization. Journal of Economic Growth, 21(1), 35-70. https://doi.org/10.1007/s10887-015-9121-4
Jebli, M. B., & Youssef, S. B. (2017). The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecological Indicators, 74, 295-301. https://doi.org/10.1016/j.ecolind.2016.11.032
Kanemoto, K., Moran, D., & Hertwich, E. G. (2016). Mapping the carbon footprint of nations. Environmental Science & Technology, 50(19), 10512-10517. https://doi.org/10.1021/acs.est.6b03227
Keeling, C. D. (1973). Industrial production of carbon dioxide from fossil fuels and limestone. Tellus, 25(2), 174-198. https://doi.org/10.3402/tellusa.v25i2.9652
Kucukvar, M., Cansev, B., Egilmez, G., Onat, N. C., & Samadi, H. (2016). Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries. Applied Energy, 184, 889-904. https://doi.org/10.1016/j.apenergy.2016.03.068
Kuznets, S. (1955). Economic growth and income inequality. American Economic Review, 45, 1-28.
Li, K., & Lin, B. (2015). Impacts of urbanization and industrialization on energy consumption/CO2 emissions: does the level of development matter? Renewable and Sustainable Energy Reviews, 52, 1107-1122. https://doi.org/10.1016/j.rser.2015.07.185
Li, T., Baležentis, T., Makutėnienė, D., Streimikiene, D., & Kriščiukaitienė, I. (2016). Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction. Applied Energy, 180, 682-694. https://doi.org/10.1016/j.apenergy.2016.08.031
Liaskas, K., Mavrotas, G., Mandaraka, M., & Diakoulaki, D. (2000). Decomposition of industrial CO2 emissions: The case of the European Union. Energy Economics, 22(4), 383-394. https://doi.org/10.1016/S0140-9883(99)00035-3
Lin, B., & Lei, X. (2015). Carbon emissions reduction in China’s food industry. Energy Policy, 86, 483492. https://doi.org/10.1016/j.enpol.2015.07.030
Lin, B., & Xie, X. (2016). CO2 emissions of China’s food industry: an input-output approach. Journal of Cleaner Production, 112, 1410-1421. https://doi.org/10.1016/j.jclepro.2015.06.119
Liu, L. C., Fan, Y., Wu, G., & Wei, Y. M. (2007). Using the LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy, 35(11), 5892-5900. https://doi.org/10.1016/j.enpol.2007.07.010
Liu, L. C., Wang, J. N., Wu, G., & Wei, Y. M. (2010). China’s regional carbon emissions change over 1997–2007. International Journal of Energy and Environment, 1(1), 161-176.
Long, X., Luo, Y., Wu, C., & Zhang, J. (2018). The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014. Environmental Science and Pollution Research, 25(13), 1309313101. https://doi.org/10.1007/s11356-018-1549-6
Ma, X., Wang, C., Dong, B., Gu, G., Chen, R., Li, Y., Zou, H., Zhang, W., & Li, Q. (2019). Carbon emissions from energy consumption in China: Its measurement and driving factors. Science of the Total Environment, 648, 1411-1420. https://doi.org/10.1016/j.scitotenv.2018.08.183
Mi, Z. F., Pan, S. Y., Yu, H., & Wei, Y. M. (2015). Potential impacts of industrial structure on energy consumption and CO2 emission: a case study of Beijing. Journal of Cleaner Production, 103, 455462. https://doi.org/10.1016/j.jclepro.2014.06.011
Moore, F. C., & Diaz, D. B. (2015). Temperature impacts on economic growth warrant stringent mitigation policy. Nature Climate Change, 5(2), 127-131. https://doi.org/10.1038/nclimate2481
Pant, K. P. (2009). Effects of agriculture on climate change: a cross-country study of factors affecting carbon emissions. Journal of Agriculture and Environment, 10, 84-102. https://doi.org/10.3126/aej.v10i0.2134
Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17-29. https://doi.org/10.1016/S0165-1765(97)00214-0
Pesaran, M. H., & Pesaran, B. (1997). Working with Microfit 4.0: interactive econometric analysis [Windows version]. Oxford University Press.
Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326. https://doi.org/10.1002/jae.616
Sarkodie, S. A., & Strezov, V. (2018). An empirical study of the Environmental Kuznets curve and Environmental Sustainability curve hypothesis for Australia, China, Ghana and the USA. Journal of Cleaner Production, 201, 98-110. https://doi.org/10.1016/j.jclepro.2018.08.039
Sauerbeck, D. R. (2001). CO2 emissions and C sequestration by agriculture–perspectives and limitations. Nutrient Cycling in Agroecosystems, 60(1-3), 253-266. https://doi.org/10.1023/A:1012617516477
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2007). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 789-813. https://doi.org/10.1098/rstb.2007.2184
Statistics South Africa. (2019). Retrieved from http://www.statssa.gov.za/
Uddin, M. M. M. (2015). Causal relationship between agriculture, industry and services sector for GDP growth in Bangladesh: An Econometric Investigation. Journal of Poverty, Investment and Development, 8, 124-129.
Van Vuuren, D. P., Stehfest, E., Gernaat, D. E., Doelman, J. C., Van den Berg, M., Harmsen, M., ... & Girod, B. (2017). Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 42, 237-250. https://doi.org/10.1016/j.gloenvcha.2016.05.008
Victor, P. A. (2017). Pollution: Economy and environment. London: Routledge. https://doi.org/10.4324/9781315108483
Wang, H., Zhang, R., Liu, M., & Bi, J. (2012). The carbon emissions of Chinese cities. Atmospheric Chemistry and Physics, 12(14), 6197-6206. https://doi.org/10.5194/acp-12-6197-2012
Wang, Z., & Yang, L. (2015). Delinking indicators on regional industry development and carbon emissions: Beijing–Tianjin–Hebei economic band case. Ecological Indicators, 48, 41-48. https://doi.org/10.1016/j.ecolind.2014.07.035
Xu, B., & Lin, B. (2015). How industrialization and urbanization process impacts on CO2 emissions in China: evidence from nonparametric additive regression models. Energy Economics, 48, 188-202. https://doi.org/10.1016/j.eneco.2015.01.005
Xu, S. C., He, Z. X., & Long, R. Y. (2014). Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Applied Energy, 127, 182-193. https://doi.org/10.1016/j.apenergy.2014.03.093
Xu, S. C., He, Z. X., Long, R. Y., & Chen, H. (2016). Factors that influence carbon emissions due to energy consumption based on different stages and sectors in China. Journal of Cleaner Production, 115, 139-148. https://doi.org/10.1016/j.jclepro.2015.11.050
Zhang, L., Pang, J., Chen, X., & Lu, Z. (2019). Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Science of the Total Environment, 665, 1017-1025. https://doi.org/10.1016/j.scitotenv.2019.02.162