Predicting housing sales in Turkey using ARIMA, LSTM and hybrid models
Abstract
Having forecast of real estate sales done correctly is very important for balancing supply and demand in the housing market. However, it is very difficult for housing companies or real estate professionals to determine how many houses they will sell next year. Although this does not mean that a prediction plan cannot be created, the studies conducted both in Turkey and different countries about the housing sector are focused more on estimating housing prices. Especially the developing technological advances allow making estimations in many areas. That is why the purpose of this study is both to provide guiding information to the companies in the sector and to contribute to the literature. In this study, a 124-month data set belonging to the 2008 (1) - 2018 (4) period has been taken into account for total housing sales in Turkey. In order to estimate the time series of sales, ARIMA (Auto Regressive Integrated Moving Average as linear model), LSTM (Long Short-Term Memory as nonlinear model) has been used. As to increase the estimation, a HYBRID (LSTM and ARIMA) model created has been used in the application. When MAPE (Mean Absolute Percentage Error) and MSE (Mean Squared Error) values obtained from each of these methods were compared, the best performance with the lowest error rate proved to be the HYBRID model, and the fact that all the application models have very close results shows the success of predictability. This is an indication that our study will contribute significantly to the literature.
Keyword : house sales forecast, hybrid model, recurrent neural network, ARIMA, LSTM network, data estimation methodology, time series analysis, housing sales in Turkey
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aladağ, Ç. H., Eğrioğlu, E., & Kadılar, C. (2009). Forecasting nonlinear time series with a hybrid methodology. Applied Mathematics Letters, 22, 1467-1470. https://doi.org/10.1016/j.aml.2009.02.006
Albayrak, A. S. (2010). ARIMA forecasting of primary energy production and consumption in Turkey: 1923–2006. Enerji, Piyasa ve Düzenleme, 1(1), 24-50. Retrieved from https://asalbayrak.files.wordpress.com/2014/10/d13.pdf
Atienza, R. (2017). LSTM by example using tensorflow (text generate). Retrieved from https://towards-datascience.com/lstm-by-example-using-tensorflow-feb0c1968537
Babu, C. N., & Reddy, B. E. (2014). A moving-average filter based Hybrid ARIMA–ANN model for forecasting time series data. Applied Soft Computing, 23, 27-38. https://doi.org/10.1016/j.asoc.2014.05.028
Choi, H. K. (2018). Stock price correlation coefficient prediction with ARIMA-LSTM hybrid model. Seoul, Korea: Korea University. Retrieved from https://arxiv.org/pdf/1808.01560v5.pdf
Contreras, J., Espinola, R., Nogales, F., & Conejo, A. (2003). ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, (pp. 1014-1020). Retrieved from http://halweb.uc3m.es/esp/Personal/personas/fjnm/esp/papers/ARIMAprices.pdf
Ediger, V. Ş., & Akar, S. (2007). ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, 35(3), (pp. 1701-1708). https://doi.org/10.1016/j.enpol.2006.05.009
Erdoğdu, E. (2007). Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey. Energy Policy (pp. 1129-1146). Retrieved from https://mpra.ub.uni-muenchen.de/19099/
The Association of Real Estate and Real Estate Investment Companies (Gayrimenkul ve Gayrimenkul Yatırım Ortaklığı Derneği), 2017. Türkiye Gayrimenkul Sektörü 2017 4. Çeyrek Raporu, İstanbul: GYODER. https://www.gyoder.org.tr/yayinlar/gyoder-gosterge
Greenwood, J., & Hercowitz, Z. (1991). The allocation of capital and the time over the business cycle. Journal of Political Economy, 99 (pp. 1188-1214). Retrieved from http://www.jeremygreenwood.net/papers/gherc91.pdf
He, G., & Deng, Q. (2012). A Hybrid ARIMA and Neural network model to forecast particulate. Matter Concentration in Changsha. Retrieved from https://pdfs.semanticscholar.org/521f/542ebf4e11ae2d456d9733824327da325749.pdf
Hocaoğlu, F. O., Kaysal, K., & Kaysal, A. (2015). Hybrid model for load forecasting (ANN and Regression). Akademik Platform (pp. 33-39). Retrieved from http://dergipark.gov.tr/download/article-file/25197
Hochreiter, S., & Schmidhuber, J. (1997). Long sort term memory. Neural Computation (pp. 1735-1780). https://doi.org/10.1162/neco.1997.9.8.1735
Ioannou, K., Birbilis, D., & Lefakis, P. (2011). A method for predicting the possibility of ring shake appearance on standing chestnut trees. Journal of Environmental Protection and Ecology (pp. 295-304). Retrieved from http://www.jepe-journal.info/vol-12-no-1
Kang, E. (2018). Generating text using an LSTM network. Retrieved from https://github.com/llSourcell/LSTM_Networks/blob/master/LSTM%20Demo.ipynb
Khashei, M., H. S. B. M. (2008). A new hybrid artificial neural networks and fuzzy regression model. Fuzzy Sets and Systems, 159, 769-786. https://doi.org/10.1016/j.fss.2007.10.011
Koutroumanidis, T., Ioannou, K., & Arabatzis, G. (2009). Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a Hybrid ARIMA–ANN Model. Energy Policy, 37, 3627-3634. https://doi.org/10.1016/j.enpol.2009.04.024
Koutroumanidis, T., Ioannou, K., & Zafeiriou, E. (2011). Forecasting bank stock market prices with a hybrid method: the case of Alpha bank. Journal of Business Economics and Management, 12(1), 144-163. https://doi.org/10.3846/16111699.2011.555388
Lin, T., Guo, T., & Aberer, K. (2017). Hybrid neural networks for learning the trend in time series (pp. 2273-2279). Melbourne, Australia. Retrieved from https://dl.acm.org/citation.cfm?id=3172204
Namın, S. S., & Namın, A. S. (2018). Forecasting economic and financial time series: ARIMA vs. LSTM. Lubbock, TX, USA: Texas Tech University. Retrieved from https://arxiv.org/ftp/arxiv/pa-pers/1803/1803.06386.pdf
Newbold, P. (1983). ARIMA model building and the time series analysis approach to forecasting. Journal of Forecasting, 2(1), 23-35. https://doi.org/10.1002/for.3980020104
Oliveira, M., & Torgo, L. (2014). Ensembles for time series forecasting. JMLR: Workshop and Conference Proceedings, 39, 360-370. http://ds2014.ijs.si/lbp/DS2014_LBP_Oliveira.pdf
Opitz, D., & Maclin, R. (1999). Popular ensemble methods: an empirical study. Journal of Artificial Intelligence Research (pp. 169-198). https://doi.org/10.1613/jair.614
Pablo, B. J., Hilda, C., Xavier, A., Diego, J. J., Felipe, S., & Henry, B. (2016). Artificial neural network and Monte Carlo forecasting with generation of L-scenarios. Intl IEEE Conference on Ubiquitous Intelligence & Computing (pp. 665-670), Toulouse, France. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0110
Papagera, A., Ioannou, K., Zaimes, G., Iakovoglou, V., & Simeonidou, M. (2014). Simulation and prediction of water allocation using artificial neural networks and a spatially distributed hydrological model. Agris on-line Papers in Economics and Informatics, 6(4), 101-111. Retrieved from https://ageconsearch.umn.edu/record/196580
Sagheer, A. & Kotb, M., 2019. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323(5), pp. 203-213. https://doi.org/10.1016/j.neucom.2018.09.082
Sallehuddin, R., Shamsuddin, S. M. H., Hashim, S. Z. M., & Abraham, A. (2007). Forecasting time series data using hybrid grey relational artificial neural network and auto regressive integrated moving average model. Neural Network World (pp. 573-605). Retrieved from http://citeseerx.ist.psu.edu/........./doi=10.1.1.218.5755&rep=rep1&type=pdf
Sarı, M. (2016). Artificial neural networks and sales demand forecasting application in the automotive industry. Sakarya Univercity, Sakarya.
Sugiartawan, P., Pulungan, R., & Sari, A. K. (2017). Prediction by a hybrid of wavelet transform and long-short-term-memory neural network. International Journal of Advanced Computer Science and Applications, 8(2), 326-332. https://doi.org/10.14569/IJACSA.2017.080243
Wu, L., & Brynjolfsson, E. (2015). The future of prediction: how Google searches foreshadow housing prices and sales. In: Economic Analysis of the Digital Economy. Chicago: University of Chicago Press (pp. 89-118). https://doi.org/10.7208/chicago/9780226206981.003.0003
Xu et al. (2019). A hybrid modelling method for time series forecasting based on a linear regression model and deep learning. Applied Intelligence, 1-14. https://doi.org/10.1007/s10489-019-01426-3
Yu, L., Jiao, C., Xin, H., Wang, Y., & Wang, K. (2018). Prediction on housing price based on deep learning. International Journal of Computer and Information Engineerin, 12(2), 90-99. https://doi.org/10.5281/zenodo.1315879
Zhang, G. P. (2003). Time series forecasting using a Hybrid ARIMA and neural netwok model. Neurocomputing, 50, 159-175. https://doi.org/10.1016/S0925-2312(01)00702-0